493 research outputs found

    Measurement of the Ξ·\eta -Ξ·β€²\eta' mixing angle in Ο€βˆ’\pi^{-} and Kβˆ’K^{-} beams with GAMS-4Ο€4\pi Setup

    Full text link
    The results of mixing angle measurement for Ξ·β€²\eta', Ξ·\eta mesons generated in charge exchange reactions with Ο€βˆ’\pi^{-} and Kβˆ’K^{-} beams are preseneted. When the Ξ·β€²\eta', Ξ·\eta mesons are described in nonstrange(NS)--strange(S) quark basis the Ο€βˆ’\pi^{-} and Kβˆ’K^{-} beams allow to study ∣ηq>|\eta_{q}> and ∣ηs>|\eta_{s}> parts of the meson wave function. The cross section ratio at tβ€²=0t'=0 (GeV/c)2^{2} in the Ο€βˆ’\pi^{-} beam is RΟ€(Ξ·β€²/Ξ·)=0.56Β±0.04R_{\pi}(\eta'/\eta)= 0.56 \pm 0.04, results in mixing angle Ο•P=(36.8Β±1.)o\phi_{P} = (36.8 \pm 1.)^{o} . For Kβˆ’K^{-} beam the ratio is RK(Ξ·β€²/Ξ·)=1.30Β±0.16R_{K}(\eta'/\eta)= 1.30 \pm 0.16. It was found that gluonium content in Ξ·β€²\eta' is sin⁑2ψG=0.15Β±0.06\sin^{2}\psi_{G}= 0.15 \pm 0.06. The experiment was carried out with GAMS-4Ο€\pi Setup.Comment: 6 pages, 4 figures, 1 table, to be submitted in European physical journal C. Minor changes, the Bibliography extende

    Contribution to the knowledge of Geminoppia (Acari, Oribatida, Oppiidae), with description of a new species from South Africa

    Get PDF
    A new species of the genus Geminoppia (Oribatida, Oppiidae) is described from moss of Hogsback State Forest, Eastern Cape Province, South Africa. Geminoppia amatholensis sp. n. differs from its related species Geminoppia maior comb. n. by the absence of discidium and the presence of very long notogastral seta h1. Summarized generic traits, an identification key, distribution and habitats of all known species of Geminoppia are presented

    Study of the Ξ·Ο€o\eta\pi^o system in the mass range up to 1200 MeV

    Full text link
    The reaction Ο€βˆ’pβ†’Ξ·Ο€on\pi^-p \to \eta\pi^o n has been studied with GAMS-2000 spectrometer in the secondary 38 GeV/c Ο€βˆ’\pi^--beam of the IHEP U-70 accelerator. Partial wave analysis of the reaction has been performed in the Ξ·Ο€o\eta\pi^o mass range up to 1200 MeV. The a0(980)a_0(980)-meson is seen as a sharp peak in S-wave. The tt-dependence of a0(980)a_0(980) production cross section has been studied. Dominant production of the a0(980)a_0(980) at a small transfer momentum tt confirms the hypothesis of Achasov and Shestakov about significant contribution of the ρ2\rho_2 exchange (IGJPC=1+2βˆ’βˆ’I^GJ^{PC}=1^+2^{--}) in the mechanism of a0(980)a_0(980) meson production in tt-channel of the reaction.Comment: 4 pages, 3 figures, talk given at HADRON'9

    On the Surface Structure of Strange Superheavy Nuclei

    Full text link
    Bound, strange, neutral superheavy nuclei, stable against strong decay, may exist. A model effective field theory calculation of the surface energy and density of such systems is carried out assuming vector meson couplings to conserved currents and scalar couplings fit to data where it exists. The non-linear relativistic mean field equations are solved assuming local baryon sources. The approach is calibrated through a successful calculation of the known nuclear surface tension.Comment: 12 pages, 9 figure

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° микронасосной систСмы для ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ кровообращСния

    Get PDF
    Introduction. Support systems currently used in modern cardiac surgery to provide partial or complete, permanent or temporary replacement of cardiac function are frequently characterized by large dimensions, thus requiring major surgical interventions. Low invasiveness can be ensured by reducing the size of the implanted part of such systems, allowing these devices to be inserted through the femoral artery.Aim. Development of a minimally invasive micropump system to support blood circulation.Materials and methods. Based on the analysis of implementation of micropump circulatory support systems (MCSS), the configuration, operational principles and main components of such a system were determined. When designing a micropump, as a unit defining the weight and size parameters of the entire system, numerical and experimental methods were used to optimize its flow path based on the condition of minimizing blood injury and thrombus formation. The lubrication and cooling system was developed by solving the thermodynamic problem of heat removal. The electronic control unit was developed on the basis of accumulated experience in the design and operation of control units for circulatory support systems.Results. A micropump with a diameter of 6.5 mm and a length of 43 mm with the required hydro- and hemodynamic parameters was designed. The device ensures minimal trauma and thrombus formation. The main MCSS parameters, as well as its main components (electric drives, lubrication and cooling systems), were defined. The configuration and operational principles of the electronic control unit (ECU), consisting in a microprocessor-based control system with feedback, were developed. The ECU built-in software manages the rotational speed of the electric drives of the micropump and coolant supply pump in the required range. In addition, the software is used to measure, display and register the MCSS operational parameters, as well as to monitor their operation in the required ranges and to exchange data between the ECU and the PC.Conclusion. All the necessary documentation for the MCSS nodes and components was prepared. These nodes and components ensure the hydro- and hemodynamic parameters required for the use of the developed minimally invasive micropump system. Future work will address the stages of MCSS assembly and debugging.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’ соврСмСнной ΠΊΠ°Ρ€Π΄ΠΈΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ для обСспСчСния частичной ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠΉ, постоянной ΠΈΠ»ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°ΠΌΠ΅Π½Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сСрдца ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ систСмы ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΠ΅ провСдСния ΡΠ΅Ρ€ΡŒΠ΅Π·Π½ΠΎΠΉ хирургичСской ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Для обСспСчСния ΠΌΠ°Π»ΠΎΠΉ инвазивности трСбуСтся сущСствСнно ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ части систСмы, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π²Π²ΠΎΠ΄ΠΈΡ‚ΡŒ эти устройства Ρ‡Π΅Ρ€Π΅Π· Π±Π΅Π΄Ρ€Π΅Π½Π½ΡƒΡŽ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΡŽ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ°Π»ΠΎΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ микронасосной систСмы для ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ кровообращСния.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. На основС Π°Π½Π°Π»ΠΈΠ·Π° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ примСнСния систСмы ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ кровообращСния (МБПК) Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π΅Π΅ состав, ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Ρ€Π°Π±ΠΎΡ‚Ρ‹, спроСктированы основныС Π΅Π΅ ΡƒΠ·Π»Ρ‹ ΠΈ элСмСнты. ΠŸΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ микронасоса ΠΊΠ°ΠΊ ΡƒΠ·Π»Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰Π΅Π³ΠΎ массогабаритныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ всСй систСмы, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ числСнныС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ части ΠΈΠ· условия ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‚Ρ€Π°Π²ΠΌΡ‹ ΠΊΡ€ΠΎΠ²ΠΈ ΠΈ тромбообразования. ΠŸΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ систСмы смазки ΠΈ охлаТдСния Ρ€Π΅ΡˆΠ°Π»Π°ΡΡŒ тСрмодинамичСская Π·Π°Π΄Π°Ρ‡Π° ΠΏΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΡŽ ΠΎΡ‚Π²ΠΎΠ΄Π° Ρ‚Π΅ΠΏΠ»Π°. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Ρ‹ΠΉ Π±Π»ΠΎΠΊ управлСния Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π½Π° основании Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡ‹Ρ‚Π° проСктирования ΠΈ эксплуатации Π±Π»ΠΎΠΊΠΎΠ² управлСния клиничСски примСняСмых систСм Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ кровообращСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ микронасос Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 6,5 ΠΌΠΌ ΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ 43 ΠΌΠΌ с Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ Π³Π΅ΠΌΠΎ- ΠΈ гидродинамичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ‚Ρ€Π°Π²ΠΌΡƒ ΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ основныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΈ спроСктированы ΡƒΠ·Π»Ρ‹ ΠΈ элСмСнты МБПК (элСктроприводы, систСма смазки ΠΈ охлаТдСния). Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ состав ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Ρ€Π°Π±ΠΎΡ‚Ρ‹ элСктронного Π±Π»ΠΎΠΊΠ° управлСния (Π­Π‘Π£), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ прСдставляСт собой ΠΌΠΈΠΊΡ€ΠΎΠΏΡ€ΠΎΡ†Π΅ΡΡΠΎΡ€Π½ΡƒΡŽ систСму управлСния МБПК с ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связью. ВстроСнноС ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ΅ обСспСчСниС Π­Π‘Π£ позволяСт ΡƒΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ частотой вращСния элСктроприводов микронасоса ΠΈ насоса ΠΏΠΎΠ΄Π°Ρ‡ΠΈ ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ Тидкости Π² Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅, ΠΈΠ·ΠΌΠ΅Ρ€ΡΡ‚ΡŒ, ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ‚ΡŒ, Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ МБПК, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Ρ… Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Ρ…, ΠΎΠ±ΠΌΠ΅Π½ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ Π­Π‘Π£ ΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ΠΎΠΌ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π° докумСнтация Π½Π° ΡƒΠ·Π»Ρ‹ ΠΈ элСмСнты МБПК, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Π΅ Π³ΠΈΠ΄Ρ€ΠΎ- ΠΈ гСмодинамичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ для примСнСния микронасосной ΠΌΠ°Π»ΠΎΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ систСмы, Ρ‡Ρ‚ΠΎ позволяСт ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ сборкС ΠΈ ΠΎΡ‚Π»Π°Π΄ΠΊΠ΅ ΡƒΠ·Π»ΠΎΠ² ΠΈ элСмСнтов МБПК Π² Ρ†Π΅Π»ΠΎΠΌ

    Optimization of the drainage system of overburden dumps using geofiltration modeling

    Get PDF
    The article describes the assessment of the predicted water flows at the site of the projected rock dumps, which was carried out using geofiltration modeling. When developing the model, we used actual data on capacities, filtration coefficients and water capacity, roof and sole marks of the selected aquifers, precipitation infiltration, as well as the projected dumps are located on the slope surfac

    Measurement of the K+β†’ΞΌ+Ξ½ΞΌΞ³K^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} decay form factors in the OKA experiment

    Full text link
    A precise measurement of the vector and axial-vector form factors difference FVβˆ’FAF_V-F_A in the K+β†’ΞΌ+Ξ½ΞΌΞ³K^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} decay is presented. About 95K events of K+β†’ΞΌ+Ξ½ΞΌΞ³K^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} are selected in the OKA experiment. The result is FVβˆ’FA=0.134Β±0.021(stat)Β±0.027(syst)F_V-F_A=0.134\pm0.021(stat)\pm0.027(syst). Both errors are smaller than in the previous FVβˆ’FAF_V-F_A measurements.Comment: 9 pages, 8 figure
    • …
    corecore